IEEE Infocom 2005 Demonstration ITEA TBONES Project

A GMPLS Unified Control Plane for Multi-Area Networks

D.Papadimitriou (Alcatel), B.Berde (Alcatel), K.Casier (IMEC), and R.Theillaud (Atos Origin)

All rights reserved © 2005, Alcatel

ITEA TBONES Project: GMPLS Control Plane

Generalized Multi-Protocol Label Switching (GMPLS)

- ✓ Distributed IP-centric control plane
- Supports overlay and unified control plane interconnection model
- Control plane driven recovery (e.g. pre-planned and dynamic rerouting)
- ✓ Traffic Engineering (TE) for multi-area/multi-layer networks

Constraint-based Routing - Operations

INFOCOM 2005 / DEMO

TBONES – GMPLS Control Plane Emulator Emulates the behavior of a set of nodes by instantiating for each node, a lower protocol stack and several control plane controllers. Each protocol stack implements IETF GMPLS protocol suite: Open Shortest Path First - Traffic Engineering (OSPF-TE) Resource reSerVation Protocol - Traffic Engineering (RSVP-TE) Each control plane controller set runs in its own process, they communicate with each other through the protocol stacks Each control plane controller consists of a set of modules: Node Emulator (NE) Signaling Controller (SIGC) \succ TE Controller (TEC) Path Computation Controller (PCC)

Experiments

- 1. TBONES software validation: OSPF(-TE), RSVP(-TE) stacks
- 2. TBONES software load and performance (benchmarking): OSPF(-TE), RSVP(-TE)

3. TBONES software capabilities

- 1. Multi-area LSP signaling (+ crankback)
- 2. Multi-region LSP signaling: Forwarding Adjacencies
- 3. Pre-planned and dynamic end-to-end LSP re-routing
- Pre-planned re-routing: protecting LSP resources are allocated at control plane level only and explicit action is required to activate (i.e. commit resource allocation) during the recovery phase
- Dynamic re-routing: switches traffic from the head-end node to an alternate LSP that is fully established only after failure occurrence

age 12

- Routing Adjacency (Two-way, Exstart, Full-State)
 - between Milan (50) Zurich (17) and Milan (50) Munich (21)
- Link State Database Synchronization: LSDB Checksum
 - per LSA (Type 1 and Type 10)
 - per Area
- RIB update check after Type 1 LSA processing (Router Link State)
- TEDB update check after Type 10 LSA processing (TE Link State)
 - add new TE link (e.g. FA-LSP) in Area 0 and in Area 17
 - re-check TEDB
- Re-check after LSRefreshTime (1800s)
- Deletion of LSA by setting MaxAge to 3600s

Page 15

- Routing Adjacency (Two-way, Exstart, Full-State)
- Link State Database Synchronization: LSDB Checksum
- RIB update check after Type 3 LSA processing (Network Summary LS)
 - From Zurich and Strasbourg toward Area 0
- RIB update check after Type 4/5 LSA processing (ASBR Summary LS and AS_External LS)
 - From Athens
 - From Dublin
 - From Zurich
- After LSRefreshTime (1800s): re-check
- Deletion of LSA by setting MaxAge to 3600s

Single Area (strict explicit routing)

- DUT as head-end of LSP (ingress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- DUT as tail-end of LSP (egress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- Same experiment with degree of freedom on ERO selection (either CP computes the Explicit Route or the Explicit Route is injected via the Management Plane i.e. XML file)

age 18

Single Area (strict explicit routing)

- Measure (DUT as ingress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - #Non success events after 3 trials and use source crankback

Measure (DUT as egress)

- #Success events with first trial: without source crankback
- #Non success events after 1 trial and use source crankback
- #Non success events after 2 trials and use source crankback
- #Non success events after 3 trials and use source crankback

age 19

Multi-Area (strict explicit routing)

- DUT as intermediate node (head-end ABR):
 - load sequential request file
 - force same strict ERO (in Area 0) for the set of LSPs between the same source-destination pair
- DUT as intermediate node (tail-end ABR):
 - load sequential request file
 - force same strict ERO (in Area 0) for the set of LSPs between the same source-destination pair
- Same experiment with degree of freedom on ERO selection (either CP computes the Explicit Route or the Explicit Route is injected via the Management Plane i.e. XML file)

age 20

Multi-Area (loose explicit routing)

- Measure (DUT as intermediate node i.e. head-end ABR)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - #Non success events after 3 trials and use source crankback
- Measure (DUT as intermediate node i.e. tail-end ABR)
 - #Success events with first trial: without intermediate/source crankback
 - #Non success events after 1 trial and use intermediate crankback
 - #Non success events after 2 trials and use intermediate crankback
 - #Non success events after 3 trials and use intermediate crankback

Page 21

1. Impact of TE routing information exchanges on performance:

- Type10_LSA: increase number of TE links (through setup of FA-LSPs across a particular LSC TE link) until reaching TEDB saturation
- 2. Impact of multi-area routing information exchanges on performance:
 - Type3_LSA: using an increasing number of inter-area prefixes until reaching saturation
 - Type4_/Type5 LSA: using an increasing number of Autonomous System Boundary Routers (ASBR) by injecting an increasing number of external prefixes per ASBR
 - increase number of external prefixes per ASBR
 - increase number of ASBR
- <u>Running conditions</u>: generate load within the network from 0% (default condition) then start from 10% until 90%, 95% and 99% trigger on individual FA-LSP setup for saturation measurement
- Measure DUT (ABR) CP Process CPU and Memory usage

Single Area (strict explicit routing)

- Load test (in terms of maximum number of LSP)
 - 1. starting with Min LSP Bandwidth = Max LSP Bandwidth (e.g. 1 Mbps) with Unreserved Bandwidth set to N x 10 Gbps
 - 2. variation of the Max LSP Bandwidth value from Min LSP Bandwidth value per component TE link until Max Reservable Bandwidth value
 - 3. Same test using inverse starting conditions
- Measure (DUT as ingress e.g. ASBR)
 - #Success events with first trial
 - CP process CPU / Memory usage
- Measure (DUT as egress e.g. ASBR)
 - #Success events with first trial
 - CP process CPU / Memory usage

Page 24

Single Area (strict explicit routing)

- DUT as head-end of LSP (ingress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- DUT as tail-end of LSP (egress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- Same experiment with variable degree of freedom on ERO selection

age 25

Single Area (strict explicit routing)

- Measure (DUT as ingress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage
- Measure (DUT as egress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage

Page 26

Multi-Area (loose explicit routing)

- DUT as head-end of LSP (ingress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- DUT as tail-end of LSP (egress):
 - load sequential request file
 - force same and different ERO for the set of LSPs between the same sourcedestination pair
- Same experiment with variable degree of freedom on ERO selection

age 27

Multi-Area (loose explicit routing)

- Measure (DUT as ingress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage
- Measure (DUT as intermediate node I.e. ABR)
 - #Success events with first trial: without intermediate/source crankback
 - #Non success events after 1 trial and use intermediate crankback
 - #Non success events after 2 trials and use intermediate crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage

Experiments 3: TBONES software capabilities

TBONES software capabilities

- 1. Multi-area LSP signaling (+ crankback)
- 2. Multi-region LSP signaling: Forwarding Adjacencies
- 3. Pre-planned and dynamic end-to-end LSP re-routing
- Pre-planned re-routing: protecting LSP resources are allocated at control plane level only and explicit action is required to activate (i.e. commit resource allocation) during the recovery phase
- Dynamic re-routing: switches traffic from the head-end node to an alternate LSP that is fully established only after failure occurrence

Single Area (strict explicit routing)

- DUT as head-end of the FA-LSP (nesting LSC LSP):
 - load sequential request file
 - force same and different (strict/loose) ERO for the set of PSC LSPs between the same source-destination pair
- DUT as tail-end of the FA-LSP (nesting LSC LSP):
 - load sequential request file
 - force same and different (strict/loose) ERO for the set of PSC LSPs between the same source-destination pair
- Same experiment with variable degree of freedom on ERO selection

Single Area (strict explicit routing)

- Measure (DUT as ingress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage
- Measure (DUT as egress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage

age 34

Multi-Area (loose explicit routing)

- DUT as head-end of the FA-LSP e.g. ABR:
 - load sequential request file
 - force same and different (strict/loose) ERO for the set of PSC LSPs between the same source-destination pair
- DUT as tail-end of the FA-LSP e.g. ABR:
 - load sequential request file
 - force same and different (strict/loose) ERO for the set of PSC LSPs between the same source-destination pair
- Same experiment with variable degree of freedom on ERO selection

age 38

Multi-Area (loose explicit routing)

- Measure (DUT as ingress)
 - #Success events with first trial: without source crankback
 - #Non success events after 1 trial and use source crankback
 - #Non success events after 2 trials and use source crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage
- Measure (DUT as intermediate node I.e. ABR)
 - #Success events with first trial: without intermediate/source crankback
 - #Non success events after 1 trial and use intermediate crankback
 - #Non success events after 2 trials and use intermediate crankback
 - Path computation time: average, min/max, median
 - DUT CP process CPU / Memory usage

Page 39

- 1. Policy Based Management: FA-LSP Triggered Setup
 - Experiment impact of triggering PSC LSP on existing FA-LSPs (during FA-LSP deletion phase)
 - <u>Condition</u>: "If more than 90% of the current FA LSC TE link unreserved bandwidth is consumed and enough resources available (including FA LSC-LSP) not higher than a given percentage, e.g., 80 %"
 - <u>Action</u>: "Trigger setup of the FA LSC LSP"

Experiment 3 – Pre-planned Re-routing (1)

age 40

• Shared link (1:N) resource at UNI

- Tunnel ID_1: LSP working 1 + LSP protecting 1 with LSP protecting 1 using same (shared) resources as LSP working 1 at source and dest. UNI, and different resources within the network
- Tunnel ID_2: LSP working 2 + LSP protecting 1 with LSP protecting 1 using same (shared) resources as LSP working 1 or 2 at source and dest. UNI, LSP working 2 resource disjoint from LSP working 1
- etc.
- Tunnel ID_N: LSP working N + LSP protecting 1 with LSP protecting 1 using same (shared) resources as LSP working 1 or ... or N-1, or N at source and dest. UNI, and LSP working N disjoint from LSP Working 1, ..., N-1
- Setting 1: DUT as UNI client/network-side
- Setting 2: DUT as intermediate node
 - generates Notify message towards head-end/tail-end node
- Running conditions: generate load within the network from 0% (default condition) then start from 10% until 90%, 95% and 99%

Experiment 3 – Pre-planned Re-routing (1)

Dimensioning Tool role:

• Help in pre-planning set of working and protecting LSP such that the set of working LSP and protecting LSP are mutually link/node disjoint

Measurement

- CP process CPU / Mem. usage
- Generation and Processing of the Notify message (single source to single destination, single source to multiple destination incl. multiple LSPs under failure)
- Generation and Processing of the re-routing triggering Path message (processing overhead measurement) for secondary LSP activation

Experiment 3 – Pre-planned Re-routing (2)

age 42

• Shared link (1:1) ^ n resource at UNI

- Tunnel ID_1: LSP working 1 + LSP protecting 1 with LSP protecting 1 using same (shared) resources as LSP working 1 at source and destination UNI, and different resources within the network
- Tunnel ID_2: LSP working 2 + LSP protecting 2 with LSP protecting 2 using same (shared) resources as LSP working 2 at source and destination UNI, LSP working 2 resource disjoint from LSP working 1
- etc.
- Tunnel ID_N: LSP working N + LSP protecting N with LSP protecting N using same (shared) resources as LSP working N at source and destination UNI, LSP working N resource disjoint from LSP working 1,..., N-1
- Setting 1: DUT as UNI client/network-side
- Setting 2: DUT as intermediate node
 - generates Notify message towards head-end/tail-end node
- Running conditions: generate load within the network from 0% (default condition) then start from 10% until 90%, 95% and 99%

Experiment 3 – Pre-planned Re-routing (2)

Dimensioning Tool role:

• Help in pre-planning set of working and protecting LSP such that the set of working LSP and protecting LSP are mutually link/node disjoint

Measurement

- CP process CPU / Mem. usage
- Generation and Processing of the Notify message (single source to single destination, single source to multiple destination incl. multiple LSPs under failure)
- Generation and Processing of the re-routing trigger Path message (processing overhead measurement) for secondary LSP activation

Experiment 3 – Dynamic Re-routing (2)

Configuration

- Starting point:
 - all (working) LSPs starting and terminating at the same source-destination pair (100%) or close at least (90%)

note: 90% means that at least 90% of the LSPs under failure are within the same source and destination pair and the other 10% are within a predetermined set of other source and destination pairs

• End point:

- all (working) LSPs start and terminate at different source-destination pair (0 %)
- Setting 1: DUT as UNI client/network-side
- Setting 2: DUT as intermediate node
 - generates Notify message towards head-end/tail-end node
- Running conditions: generate load within the network from 0% (default condition) then start from 10% until 90%, 95% and 99%

Experiment 3 – Dynamic Re-routing (2)

Measurement

- CP process CPU / Mem. usage
- Generation and Processing of the Notify message (single source to single destination, single source to multiple destination incl. multiple LSPs under failure)
- Generation and Processing of the re-routing trigger Path message (processing overhead measurement) for primary LSP establishment

